论文标题
RKHS嵌入用于估计非线性压电系统的嵌入
RKHS Embedding for Estimating Nonlinear Piezoelectric Systems
论文作者
论文摘要
压电系统中的非线性可能是由非线性本构定律或外部因素等内部因素产生的,例如实现边界条件。从系统中所有非线性来源的第一原理中得出详细的模型可能很困难甚至不可能。作为一个特定的例子,在使用具有高阶术语的电焓密度的传统建模技术中,选择哪些多项式非线性是必不可少的。本文介绍了自适应估计器技术,以估计某些压电系统中可能出现的非线性。在这里,一个基本的假设是,非线性可以在繁殖核Hilbert Space(RKHS)中建模为函数。与传统的建模方法不同,本文讨论的方法允许开发模型,而无需了解非线性的精确形式或结构。可以将此方法视为一种数据驱动的方法,以近似未知的非线性系统。本文介绍了自适应估计器背后的理论,并在数值上研究了该方法对一类非线性压电复合梁的有效性。
Nonlinearities in piezoelectric systems can arise from internal factors such as nonlinear constitutive laws or external factors like realizations of boundary conditions. It can be difficult or even impossible to derive detailed models from the first principles of all the sources of nonlinearity in a system. As a specific example, in traditional modeling techniques that use electric enthalpy density with higher-order terms, it can be problematic to choose which polynomial nonlinearities are essential. This paper introduces adaptive estimator techniques to estimate the nonlinearities that can arise in certain piezoelectric systems. Here an underlying assumption is that the nonlinearities can be modeled as functions in a reproducing kernel Hilbert space (RKHS). Unlike traditional modeling approaches, the approach discussed in this paper allows the development of models without knowledge of the precise form or structure of the nonlinearity. This approach can be viewed as a data-driven method to approximate the unknown nonlinear system. This paper introduces the theory behind the adaptive estimator and studies the effectiveness of this approach numerically for a class of nonlinear piezoelectric composite beams.