论文标题
可数图的形态延伸类的poset
The poset of morphism-extension classes of countable graphs
论文作者
论文摘要
令$ \ mathrm {xy_ {l,t,t}} $表示满足公理$ t $满足的无限无限$ l $ - 结构,其中X型的所有同态都可以是同质性,单态性或同构$ $ y $ y $ y $ y $ m m $ y $ y $ y $ y $ y的$ y(是$ y $ y y $ y $ y的$ y)的$ y($ y y y y y y y y y是$ y的$ y y y y是$ y $ y的$ y y y是$ $ y的$ y y是$ $ y的$ y n是$ $ $ y的$ y $ m m例如,自动形态或过滤性内态性)。洛克特(Lockett)和特鲁斯(Truss)为关系结构推出了18种这样的形态延伸类。但是,对于给定的$ l,t $,两个或多个或多个形态扩张属性可能会定义相同的结构。 在本文中,我们在可数(无向无环)图的形态扩张类别之间建立了所有平等性和不平等。
Let $\mathrm{XY_{L,T}}$ denote the class of countably infinite $L$-structures that satisfy the axioms $T$ and in which all homomorphisms of type X (these could be homomorphisms, monomorphisms, or isomorphisms) between finite substructures of $M$ are restrictions of an endomorphism of $M$ of type Y (for example, an automorphism or a surjective endomorphism). Lockett and Truss introduced 18 such morphism-extension classes for relational structures. For a given pair $L,T$, however, two or more morphism-extension properties may define the same class of structures. In this paper, we establish all equalities and inequalities between morphism-extension classes of countable (undirected, loopless) graphs.