论文标题

协变量量子力学和量子时空

Covariant Quantum Mechanics and Quantum Spacetime

论文作者

Bedić, Suzana, Kong, Otto C. W., Ting, Hock King

论文摘要

我们在文章中介绍了基于小组理论构造的洛伦兹协变量量子力学的制定,该构造是从海森伯格 - 韦尔对称性的组理论结构,其位置和动量操作员在洛伦兹对称下的Minkowski四媒介转换。基本表示形式被确定为一致的状态表示,本质上是常规表示的不可还原组成部分,其匹配表示组的扩展为$ c^*$ - 代数为可观察的代数。该公式的关键特征是它不是统一的,而是伪独立的,与Minkowski时空表示完全相同。显式波函数描述是不对变量域的任何限制进行的,但具有有限的积分内部产品。相关的协变量谐波振荡器FOCK状态基础具有与具有欧几里得位置和动量运算符的谐波振荡器的所有标准属性。 Lorentz对称性的Galilean极限和Lorentz协变框架的经典限制通过代数的适当对称收缩及其表示,包括通过相位空间的对称性所描述的动力学来检索,包括真实/复杂数量坐标和非共同操作员协调的动态。后者给出了(投影)希尔伯特空间的明确图片,作为量子/非交换时空。

We present in the article the formulation of a version of Lorentz covariant quantum mechanics based on a group theoretical construction from a Heisenberg-Weyl symmetry with position and momentum operators transforming as Minkowski four-vectors under the Lorentz symmetry. The basic representation is identified as a coherent state representation, essentially an irreducible component of the regular representation, with the matching representation of an extension of the group $C^*$-algebra giving the algebra of observables. The key feature of the formulation is that it is not unitary but pseudo-unitary, exactly in the same sense as the Minkowski spacetime representation. Explicit wavefunction description is given without any restriction of the variable domains, yet with a finite integral inner product. The associated covariant harmonic oscillator Fock state basis has all the standard properties in exact analog to those of a harmonic oscillator with Euclidean position and momentum operators of any `dimension'. Galilean limit of the Lorentz symmetry and the classical limit of the Lorentz covariant framework are retrieved rigorously through appropriate symmetry contractions of the algebra and its representation, including the dynamics described through the symmetry of the phase space, given both in terms of real/complex number coordinates and noncommutative operator coordinates. The latter gives an explicit picture of the (projective) Hilbert space as a quantum/noncommutative spacetime.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源