论文标题

通过多视图信息瓶颈学习强大的表示

Learning Robust Representations via Multi-View Information Bottleneck

论文作者

Federici, Marco, Dutta, Anjan, Forré, Patrick, Kushman, Nate, Akata, Zeynep

论文摘要

信息瓶颈原则通过训练编码器保留所有信息,这与预测标签相关的所有信息提供了一种信息理论方法,同时最大程度地减少了表示标签的数量。但是,原始公式需要标记的数据来识别多余的信息。在这项工作中,我们将此功能扩展到多视图无监督的设置,其中提供了同一基础实体的两个视图,但标签未知。这使我们能够识别多余的信息,因为这两种视图都不共享。理论分析导致了一种新的多视图模型的定义,该模型在Mir-Flickr数据集的粗略数据集和标签限制版本上产生最先进的结果。我们还通过利用标准数据增强技术的优势将理论扩展到单视图设置,与代表学习的常见无监督方法相比,经验显示出更好的概括能力。

The information bottleneck principle provides an information-theoretic method for representation learning, by training an encoder to retain all information which is relevant for predicting the label while minimizing the amount of other, excess information in the representation. The original formulation, however, requires labeled data to identify the superfluous information. In this work, we extend this ability to the multi-view unsupervised setting, where two views of the same underlying entity are provided but the label is unknown. This enables us to identify superfluous information as that not shared by both views. A theoretical analysis leads to the definition of a new multi-view model that produces state-of-the-art results on the Sketchy dataset and label-limited versions of the MIR-Flickr dataset. We also extend our theory to the single-view setting by taking advantage of standard data augmentation techniques, empirically showing better generalization capabilities when compared to common unsupervised approaches for representation learning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源