论文标题

$π$ vae:与MCMC的贝叶斯深度学习之前的随机过程

$π$VAE: a stochastic process prior for Bayesian deep learning with MCMC

论文作者

Mishra, Swapnil, Flaxman, Seth, Berah, Tresnia, Zhu, Harrison, Pakkanen, Mikko, Bhatt, Samir

论文摘要

随机过程提供了一种数学优雅的方式模型复杂数据。从理论上讲,它们为可以编码广泛有趣的假设的功能类提供了灵活的先验。但是,在实践中,很难通过优化或边缘化进行有效的推论,这一问题进一步加剧了大数据和高维输入空间。我们提出了一种新型的变分自动编码器(VAE),称为先前的编码变异自动编码器($π$ vae)。 $π$ vae是有限交换的,kolmogorov是一致的,因此是一个连续的随机过程。我们使用$π$ vae学习功能类的低维嵌入。我们表明,我们的框架可以准确地学习表达功能类,例如高斯过程,也可以函数的属性来启用统计推断(例如log高斯过程的积分)。对于流行的任务,例如空间插值,$π$ vae在准确性和计算效率方面都可以达到最先进的性能。也许最有用的是,我们证明了所学的低维独立分布的潜在空间表示提供了一种优雅且可扩展的方法,可以在概率编程语言(例如Stan)中对随机过程进行贝叶斯推断。

Stochastic processes provide a mathematically elegant way model complex data. In theory, they provide flexible priors over function classes that can encode a wide range of interesting assumptions. In practice, however, efficient inference by optimisation or marginalisation is difficult, a problem further exacerbated with big data and high dimensional input spaces. We propose a novel variational autoencoder (VAE) called the prior encoding variational autoencoder ($π$VAE). The $π$VAE is finitely exchangeable and Kolmogorov consistent, and thus is a continuous stochastic process. We use $π$VAE to learn low dimensional embeddings of function classes. We show that our framework can accurately learn expressive function classes such as Gaussian processes, but also properties of functions to enable statistical inference (such as the integral of a log Gaussian process). For popular tasks, such as spatial interpolation, $π$VAE achieves state-of-the-art performance both in terms of accuracy and computational efficiency. Perhaps most usefully, we demonstrate that the low dimensional independently distributed latent space representation learnt provides an elegant and scalable means of performing Bayesian inference for stochastic processes within probabilistic programming languages such as Stan.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源