论文标题
Cuntz代数连续场的拓扑不变
A topological invariant for continuous fields of the Cuntz algebras
论文作者
论文摘要
对于在有限的CW复合体上的Cuntz代数连续的领域,我们引入了拓扑不变的,这是Dadarlat-Pennig的广义同胞组中的一个元素,并且仅当该领域来自Pimsner的构造时,并且仅当该领域来自矢量bunder bundle时,就会证明不变性是琐碎的。
For a continuous field of the Cuntz algebra over a finite CW complex, we introduce a topological invariant, which is an element in Dadarlat-Pennig's generalized cohomology group, and prove that the invariant is trivial if and only if the field comes from a vector bundle via Pimsner's construction.