论文标题

PAC代码:顺序解码与列表解码

PAC Codes: Sequential Decoding vs List Decoding

论文作者

Rowshan, Mohammad, Burg, Andreas, Viterbo, Emanuele

论文摘要

在2019年国际信息理论研讨会(ISIT)的香农演讲中,阿里肯提议采用一对一的卷积转换作为极性变换之前的预编码步骤。该串联的结果代码称为极化调整后的卷积(PAC)代码。在此方案中,将一对极性映射器和Demapper作为预处理设备和后处理设备部署在无内存的通道周围,该通道向外解码器提供了极化信息,从而改善了外部代码的误差校正性能。在本文中,列表解码和顺序解码(包括FANO解码和堆栈解码)首先被调整用于解码PAC代码。然后,为了降低PAC/极性代码的顺序解码的复杂性,我们提出(i)自适应启发式指标,(ii)对回溯的树搜索约束,以避免探索不太可能的子路径的探索,以及(iii)树木搜索策略与极性代码中错误发生的模式一致。这些有助于将平均解码时间复杂性从50%降低到80%,在FER = 10^-3范围内的误差校正性能中以0.05至0.3 dB的降解,相对于不应用相应的搜索策略而言。此外,作为PAC/极性代码的FANO解码的重要成分,提供了一种有效的中间LLR和部分总和的计算方法。此方法可有效回溯,并避免存储中间信息或重新启动解码过程。最终,将所有三种解码算法都根据性能,复杂性和资源要求进行比较。

In the Shannon lecture at the 2019 International Symposium on Information Theory (ISIT), Arıkan proposed to employ a one-to-one convolutional transform as a pre-coding step before the polar transform. The resulting codes of this concatenation are called polarization-adjusted convolutional (PAC) codes. In this scheme, a pair of polar mapper and demapper as pre- and postprocessing devices are deployed around a memoryless channel, which provides polarized information to an outer decoder leading to improved error correction performance of the outer code. In this paper, the list decoding and sequential decoding (including Fano decoding and stack decoding) are first adapted for use to decode PAC codes. Then, to reduce the complexity of sequential decoding of PAC/polar codes, we propose (i) an adaptive heuristic metric, (ii) tree search constraints for backtracking to avoid exploration of unlikely sub-paths, and (iii) tree search strategies consistent with the pattern of error occurrence in polar codes. These contribute to the reduction of the average decoding time complexity from 50% to 80%, trading with 0.05 to 0.3 dB degradation in error correction performance within FER=10^-3 range, respectively, relative to not applying the corresponding search strategies. Additionally, as an important ingredient in Fano decoding of PAC/polar codes, an efficient computation method for the intermediate LLRs and partial sums is provided. This method is effective in backtracking and avoids storing the intermediate information or restarting the decoding process. Eventually, all three decoding algorithms are compared in terms of performance, complexity, and resource requirements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源