论文标题
子系统的符号粗粒经典和半古典演化:新的理论方面
Symplectic Coarse-Grained Classical and Semi-Classical Evolution of Subsystems: New Theoretical Aspects
论文作者
论文摘要
我们研究了哈密顿系统子系统的经典和半经典时间的演变;这是通过对Littlejohn引入的Heller融化高斯近似的概括来完成的。我们研究中的关键工具是与Gromov与N. Dias和J. Prata合作获得的Gromov的“象征性骆驼原理”的扩展。该扩展显示,具有较小尺寸的相位空间上的符号相位空间球的正交投影还包含一个半径相同的符号球。在量子情况下,这些互合型球的半径等于SQRT(H_BAR),并表示最小不确定性的椭圆形,我们在以前的工作中称之为“量子斑点”。
We study the classical and semiclassical time evolutions of subsystems of a Hamiltonian system; this is done using a generalization of Heller's thawed Gaussian approximation introduced by Littlejohn. The key tool in our study is an extension of Gromov's "principle of the symplectic camel" obtained in collaboration with N. Dias and J. Prata. This extension says that the orthogonal projection of a symplectic phase space ball on a phase space with a smaller dimension also contains a symplectic ball with the same radius. In the quantum case, the radii of these symplectic balls are taken equal to sqrt(h_bar) and represent ellipsoids of minimum uncertainty, which we have called "quantum blobs" in previous work.