论文标题

CRL:图像分类的班级代表性学习

CRL: Class Representative Learning for Image Classification

论文作者

Chandrashekar, Mayanka, Lee, Yugyung

论文摘要

通过不同的数据集构建强大而实时的分类器是深度学习研究人员最重要的挑战之一。这是因为使用培训(可见)数据的模型与应用程序中的真实(看不见)数据之间存在很大的差距。包括零射击学习(ZSL)在内的最新作品试图解决通过转移学习克服明显差距的问题。在本文中,我们提出了一个称为阶级代表性学习模型(CRL)的新型模型,该模型在受ZSL影响的图像分类中特别有效。在CRL模型中,首先,学习步骤是通过汇总从卷积神经网络(CNN)提取的突出特征来构建类代表来表示数据集中的类。其次,CRL中的推论步骤是在类代表和新数据之间匹配。与ZSL和移动深度学习中当前的最新研究相比,提出的CRL模型表现出卓越的性能。提出的CRL模型已在使用Apache Spark的平行环境中实施和评估,以进行分布式学习和识别。一项关于基准数据集,Imagenet-1K,Caltech-101,Caltech-256,CIFAR-100的广泛实验研究表明,与图像分类中的最新性能相比,CRL可以构建一个班级分布模型,在学习和识别性能方面具有巨大的改善而无需牺牲准确性。

Building robust and real-time classifiers with diverse datasets are one of the most significant challenges to deep learning researchers. It is because there is a considerable gap between a model built with training (seen) data and real (unseen) data in applications. Recent works including Zero-Shot Learning (ZSL), have attempted to deal with this problem of overcoming the apparent gap through transfer learning. In this paper, we propose a novel model, called Class Representative Learning Model (CRL), that can be especially effective in image classification influenced by ZSL. In the CRL model, first, the learning step is to build class representatives to represent classes in datasets by aggregating prominent features extracted from a Convolutional Neural Network (CNN). Second, the inferencing step in CRL is to match between the class representatives and new data. The proposed CRL model demonstrated superior performance compared to the current state-of-the-art research in ZSL and mobile deep learning. The proposed CRL model has been implemented and evaluated in a parallel environment, using Apache Spark, for both distributed learning and recognition. An extensive experimental study on the benchmark datasets, ImageNet-1K, CalTech-101, CalTech-256, CIFAR-100, shows that CRL can build a class distribution model with drastic improvement in learning and recognition performance without sacrificing accuracy compared to the state-of-the-art performances in image classification.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源