论文标题
学会不在嘈杂标签的情况下学习
Learning Not to Learn in the Presence of Noisy Labels
论文作者
论文摘要
在标签噪声的存在下学习是一项具有挑战性但重要的任务:对于在存在错误标记的数据集存在下的设计模型至关重要。在本文中,我们发现,一种称为赌徒损失的新的损失功能为各种腐败级别的噪声标记提供了强大的稳健性。我们表明,使用此损失功能的培训鼓励该模型“戒除”带有嘈杂标签的数据点学习,从而产生了一种简单有效的方法来改善鲁棒性和概括。此外,我们提出了该方法的两个实际扩展:1)分析性的早期停止标准在噪音标签的记忆之前大致停止训练,以及2)一种用于设置不需要噪声腐败率的超参数的启发式方法。与现有基准相比,我们通过在三个图像和文本分类任务中取得强大的结果来证明我们的方法的有效性。
Learning in the presence of label noise is a challenging yet important task: it is crucial to design models that are robust in the presence of mislabeled datasets. In this paper, we discover that a new class of loss functions called the gambler's loss provides strong robustness to label noise across various levels of corruption. We show that training with this loss function encourages the model to "abstain" from learning on the data points with noisy labels, resulting in a simple and effective method to improve robustness and generalization. In addition, we propose two practical extensions of the method: 1) an analytical early stopping criterion to approximately stop training before the memorization of noisy labels, as well as 2) a heuristic for setting hyperparameters which do not require knowledge of the noise corruption rate. We demonstrate the effectiveness of our method by achieving strong results across three image and text classification tasks as compared to existing baselines.