论文标题
蒸发行星信封的耦合热和成分演化
Coupled Thermal and Compositional Evolution of Photo Evaporating Planet Envelopes
论文作者
论文摘要
光蒸发质量损失雕刻了紧密孔的亚纳斯质量系外行星的大气进化。迄今为止,温暖的海王星的质量损失模型假设在整个星球的演变中,大气丰度保持恒定。然而,通过扩散分离和氢的优先损失,数十亿年的逃逸年度累积影响会导致行星信封相对于氢和金属而言相对于氢而增强的行星信封(Hu等,2015)。我们已经对围绕亚北极肿质量行星的氢储气信封的耦合热,质量和组成演化进行了第一个自洽计算。我们扩展了MESA(恒星天体物理学实验的模块)恒星演化代码,以模拟不断发展的光蒸发行星的包膜丰度。我们发现GJ 436b是最初启发Hu等人的行星。 (2015年)提出氦气增强的行星大气的形成,需要一个原始的包膜,它太大了,无法增强氦气。尽管如此,我们表明,与GJ 436B相似的行星仅在几次质量损失后,可以增强氦气。这些行星具有$ r_p \ Lessim 3.00〜r_ \ oplus $,初始$ f _ {\ rm env} <0.5 \%$,iradiation flux $ \ sim $ \ sim $ 10 $^1 $ -10 $ -10 $ -10 $^3 $倍于地球的倍,并获得我们模型中y = 0.40的最终氦裂缝。优先包络损失的结果可能会对亚乳头群体的质量 - 拉迪乌斯关系和大气光谱产生可见的后果。
Photo-evaporative mass loss sculpts the atmospheric evolution of tightly-orbiting sub-Neptune-mass exoplanets. To date, models of the mass loss from warm Neptunes have assumed that the atmospheric abundances remain constant throughout the planet's evolution. However, the cumulative effects of billions of years of escape modulated by diffusive separation and preferential loss of hydrogen can lead to planetary envelopes that are enhanced in helium and metals relative to hydrogen (Hu et al. 2015). We have performed the first self-consistent calculations of the coupled thermal, mass-loss, and compositional evolution of hydrogen-helium envelopes surrounding sub-Neptune mass planets. We extended the MESA (Modules for Experiments in Stellar Astrophysics) stellar evolution code to model the evolving envelope abundances of photo-evaporating planets. We find that GJ 436b, the planet that originally inspired Hu et al. (2015) to propose the formation of helium enhanced planetary atmospheres, requires a primordial envelope that is too massive to become helium enhanced. Nonetheless, we show that helium enhancement is possible for planets with masses similar to GJ 436b after only several Gyr of mass loss. These planets have $R_p\lesssim 3.00~R_\oplus$, initial $f_{\rm env} < 0.5\%$, irradiation flux $\sim$10$^1$-10$^3$ times that of Earth, and obtain final helium fractions in excess of Y=0.40 in our models. The results of preferential envelope loss may have observable consequences on mass-radius relations and atmospheric spectra for sub-Neptune populations.