论文标题
矢量有价值的统一的martingale和Ergodic定理具有连续参数
Vector valued unified martingale and ergodic theorems with continuous parameter
论文作者
论文摘要
我们证明了Martingale-ergodic和Ergodic-Martingale定理,具有连续参数的Bochner Bochner集成函数。我们首先证明了具有连续参数的矢量有价值的martingales的融合。给出了Martingale-ergodic和Ergodic-Martingale平均值的常态以及几乎所有地方。我们还获得了主导和最大的不平等现象。最后,我们证明了A.E. Martingale-ergodic和Ergodic-Martingale定理将在某些假设下重合。
We prove martingale-ergodic and ergodic-martingale theorems with continuous parameter for vector valued Bochner integrable functions. We first prove almost everywhere convergence of vector valued martingales with continuous parameter. The norm as well as almost everywhere convergence of martingale-ergodic and ergodic-martingale averages are given. We also obtain the dominant and maximal inequalities. Finally, we show that a.e. martingale-ergodic and ergodic-martingale theorems will coincide under certain assumptions.