论文标题
随着时间变化的内容流行的动态概率缓存的设计
The Design of Dynamic Probabilistic Caching with Time-Varying Content Popularity
论文作者
论文摘要
在本文中,当瞬时内容的受欢迎程度可能随着时间而变化,而可以预测一个时间窗口中的平均内容受欢迎程度时,我们为场景设计动态概率缓存。基于平均内容的流行,可以找到最佳的内容缓存概率,例如,从解决优化问题中,文献中现有的结果可以通过静态内容放置实现最佳的缓存概率。这项工作的目的是设计动态概率缓存:i)在时间不变的内容流行下(分布)将(分布)收敛到最佳内容缓存概率,ii)适应时间变化的时间变化的内容的内容流行。实现上述目标需要进行动态内容更换的新设计,因为静态缓存无法适应不同的内容流行,而经典的动态替代策略(例如LRU)无法融合到目标缓存概率(因为它们不利用任何内容受欢迎程度信息)。我们将动态概率替代策略的设计建模为找到马尔可夫链的状态过渡概率矩阵的问题,并提出一种生成和完善过渡概率矩阵的方法。提供广泛的数值结果以验证拟议设计的有效性。
In this paper, we design dynamic probabilistic caching for the scenario when the instantaneous content popularity may vary with time while it is possible to predict the average content popularity over a time window. Based on the average content popularity, optimal content caching probabilities can be found, e.g., from solving optimization problems, and existing results in the literature can implement the optimal caching probabilities via static content placement. The objective of this work is to design dynamic probabilistic caching that: i) converge (in distribution) to the optimal content caching probabilities under time-invariant content popularity, and ii) adapt to the time-varying instantaneous content popularity under time-varying content popularity. Achieving the above objective requires a novel design of dynamic content replacement because static caching cannot adapt to varying content popularity while classic dynamic replacement policies, such as LRU, cannot converge to target caching probabilities (as they do not exploit any content popularity information). We model the design of dynamic probabilistic replacement policy as the problem of finding the state transition probability matrix of a Markov chain and propose a method to generate and refine the transition probability matrix. Extensive numerical results are provided to validate the effectiveness of the proposed design.