论文标题

城市D2D网络中的恶意软件传播

Malware propagation in urban D2D networks

论文作者

Hinsen, Alexander, Jahnel, Benedikt, Cali, Elie, Wary, Jean-Philippe

论文摘要

我们介绍和分析通过固定Cox-Gilbert图提供的纯D2D网络中恶意软件传播的模型。在这里,设备形成一个带有随机强度度量的泊松点过程$λλ$,其中$λ$是固定的,例如,通过实现代表城市街道系统的泊松 - voronoi Tessellation实现的边缘长度度量。我们假设在初始时间,网络中心的典型设备带有恶意软件,并在随机等待时间后开始感染相邻的设备。在这里,我们关注的是马尔可夫模型,等待时间是指数的随机变量和非马克维亚模型,在那里等待时间具有严格的最小和有限的最大等待时间。我们为传播速度提供数值结果,具体取决于系统参数。在第二步中,我们介绍并分析了一个名为White Knights的特殊设备的恶意软件传播的计数器,该设备具有攻击能力,可以从受感染的设备中消除恶意软件并将其转变为白色骑士。基于模拟,我们隔离了在马尔可夫和非马克维亚环境中,恶意软件生存或消除的参数制度。

We introduce and analyze models for the propagation of malware in pure D2D networks given via stationary Cox-Gilbert graphs. Here, the devices form a Poisson point process with random intensity measure $λΛ$, where $Λ$ is stationary and given, for example, by the edge-length measure of a realization of a Poisson-Voronoi tessellation that represents an urban street system. We assume that, at initial time, a typical device at the center of the network carries a malware and starts to infect neighboring devices after random waiting times. Here we focus on Markovian models, where the waiting times are exponential random variables, and non-Markovian models, where the waiting times feature strictly positive minimal and finite maximal waiting times. We present numerical results for the speed of propagation depending on the system parameters. In a second step, we introduce and analyze a counter measure for the malware propagation given by special devices called white knights, which have the ability, once attacked, to eliminate the malware from infected devices and turn them into white knights. Based on simulations, we isolate parameter regimes in which the malware survives or is eliminated, both in the Markovian and non-Markovian setting.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源