论文标题
时空搭配方法:循环量子哈密顿约束
Space-Time Collocation Method: Loop Quantum Hamiltonian Constraints
论文作者
论文摘要
提出了一种使用渐近构基基函数的时空搭配方法(STCM),并应用于schwarzschild内部循环量化处理的量子汉密尔顿约束。从规范上讲,这些描述采用了部分差异方程(PDE)的形式。时空搭配方法提出了一种计算高效,收敛性且易于并行的方法来解决此类方程,这是本研究的主要新颖性。数值模拟的结果将证明并行计算方法受益。并显示框架的一般灵活性以处理任意范围的域。在适用的情况下,将比较计算的解决方案与传统方法中通过迭代的离散值的网格逐步踩踏的解决方案,并通过递归关系计算解决方案。
A space-time collocation method (STCM) using asymptotically-constant basis functions is proposed and applied to the quantum Hamiltonian constraint for a loop-quantized treatment of the Schwarzschild interior. Canonically, these descriptions take the form of a partial-difference equation (PDE). The space-time collocation approach presents a computationally efficient, convergent, and easily parallelizable method for solving this class of equations, which is the main novelty of this study. Results of the numerical simulations will demonstrate the benefit from a parallel computing approach; and show general flexibility of the framework to handle arbitrarily-sized domains. Computed solutions will be compared, when applicable, to a solution computed in the conventional method via iteratively stepping through a predefined grid of discrete values, computing the solution via a recursive relationship.