论文标题
球形坐标中的数值相对论:Einstein工具包的新的动力时空和一般相对论MHD进化框架
Numerical relativity in spherical coordinates: A new dynamical spacetime and general relativistic MHD evolution framework for the Einstein Toolkit
论文作者
论文摘要
我们提出了SphericalNR,这是一个新的Einstein工具包的新框架,该框架在数值上求解了Einstein场方程与一般相对论磁性水力学方程(GRMHD)在3+1间距的一般相对论磁性水力动力学(GRMHD)中的方程式,在球形体内的3+1分中,在没有对称性假设的球形坐标中。时空演化是使用Baumgarte-Shapiro-Shibata-Nakamura方程或具有约束阻尼的完全协变量Z4系统进行的参考文献。我们已经开发了具有矢量电势方法的valencia grmHD公式的参考 - 现象版本,以确保在进化过程中没有磁单孔。在我们的框架中,每个动态场(时空和物质)都使用其组件在正顺序的基础上进化。此外,有关球形坐标系的所有几何信息均以出现在进化方程中的源术语进行编码。这允许直接扩展笛卡尔高分辨率冲击捕捉有限体积代码,以在我们的框架中使用球形坐标。为此,我们已经改编了grhydro,这是爱因斯坦工具包中已经可用的笛卡尔有限体积GRMHD代码,用于使用球形坐标。我们介绍了框架的完整演化方程,以及其在爱因斯坦工具包中实现的详细信息。我们通过证明它通过静态和动力学的各种具有挑战性的代码测试来验证球形NR。
We present SphericalNR, a new framework for the publicly available Einstein Toolkit that numerically solves the Einstein field equations coupled to the equations of general relativistic magnetohydrodynamics (GRMHD) in a 3+1 split of spacetime in spherical coordinates without symmetry assumptions. The spacetime evolution is performed using reference-metric versions of either the Baumgarte-Shapiro-Shibata-Nakamura equations or the fully covariant and conformal Z4 system with constraint damping. We have developed a reference-metric version of the Valencia formulation of GRMHD with a vector potential method, guaranteeing the absence of magnetic monopoles during the evolution. In our framework, every dynamical field (both spacetime and matter) is evolved using its components in an orthonormal basis with respect to the spherical reference-metric. Furthermore, all geometric information about the spherical coordinate system is encoded in source terms appearing in the evolution equations. This allows for the straightforward extension of Cartesian high-resolution shock-capturing finite volume codes to use spherical coordinates with our framework. To this end, we have adapted GRHydro, a Cartesian finite volume GRMHD code already available in the Einstein Toolkit, to use spherical coordinates. We present the full evolution equations of the framework, as well as details of its implementation in the Einstein Toolkit. We validate SphericalNR by demonstrating it passes a variety of challenging code tests in static and dynamical spacetimes.