论文标题

在Galois对象的仪表组上

On the gauge group of Galois objects

论文作者

Han, Xiao, Landi, Giovanni

论文摘要

我们研究了非交易性主束的Ehresmann--schauenburg Bialgebroid,作为对主要捆绑包的经典仪表量的量化。当基本代数位于总空间代数的中心时,非交易性主束的仪表组与双ggebroid的两组群同构。特别是,我们考虑了galois对象(在某种意义上,在某种意义上的一个点上的非欺骗性捆绑包)为此是双gebroid是Hopf代数。为此,我们给出了双晶型物体的两种两种两种结构和自动形态的结构。示例包括组HOPF代数和TAFT代数的Galois对象。

We study the Ehresmann--Schauenburg bialgebroid of a noncommutative principal bundle as a quantization of the classical gauge groupoid of a principal bundle. When the base algebra is in the centre of the total space algebra, the gauge group of the noncommutative principal bundle is isomorphic to the group of bisections of the bialgebroid. In particular we consider Galois objects (non-trivial noncommutative bundles over a point in a sense) for which the bialgebroid is a Hopf algebra. For these we give a crossed module structure for the bisections and the automorphisms of the bialgebroid. Examples include Galois objects of group Hopf algebras and of Taft algebras.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源