论文标题
在普通的hom-leibniz-rinehart代数上
On split regular Hom-Leibniz-Rinehart algebras
论文作者
论文摘要
在本文中,我们介绍了hom-leibniz-rinehart代数的概念,作为霍姆 - 莱布尼兹代数代数的代数类似物,并证明如此任意的定期拆分常规的hom-leibniz-rinehart代数$ l $ l = u+y+sum_γi_γi_γ$ $ $ $ $ $ $ $ $任何$i_γ$,$ l $的理想理想,满足$ [i_γ,i_Δ] = 0 $,如果$ [γ] \ neq [δ] $。在续集中,我们分别开发出根和权重的连接技术,分别用于分裂的hom-leibniz-rinehart代数。最后,我们研究了紧密分裂的常规hom-leibniz-rinehart代数的结构。
In this paper, we introduce the notion of the Hom-Leibniz-Rinehart algebra as an algebraic analogue of Hom-Leibniz algebroid, and prove that such an arbitrary split regular Hom-Leibniz-Rinehart algebra $L$ is of the form $L=U+\sum_γI_γ$ with $U$ a subspace of a maximal abelian subalgebra $H$ and any $I_γ$, a well described ideal of $L$, satisfying $[I_γ, I_δ]= 0$ if $[γ]\neq [δ]$. In the sequel, we develop techniques of connections of roots and weights for split Hom-Leibniz-Rinehart algebras respectively. Finally, we study the structures of tight split regular Hom-Leibniz-Rinehart algebras.