论文标题
守时希尔伯特计划和经过认证的近似奇异性
Punctual Hilbert Schemes and Certified Approximate Singularities
论文作者
论文摘要
在本文中,我们提供了一种新方法来证明附近的多项式系统具有具有规定的多重性结构的奇异孤立根。更准确地说,给定一个多项式系统f $ =(f \ _1,\ ldots,f \ _n)\在C [x \ _1,\ ldots,x \ _n]^n $中,我们在固定的偏移系统上,在正常的条件下进行了$ f $ f $ f $ f $ f $ f $ f $ f $ f $ f $ f newton迭代。迭代同时收敛到奇异根的坐标以及所谓的逆系统的系数,该系统描述了根部的多重性结构。我们使用$$α$$ - 理论测试来证明二次收敛,并在变形的大小和近似误差上切换界限。该方法依赖于对守时希尔伯特计划的分析,我们为此提供了新的描述。我们特别表明,它的某些阶层可以合理地参数化,并在认证中利用这些参数化。我们在数值实验中显示了如何将近似逆系统计算为牛顿迭代的起点以及通过我们的标准证明的具有多重性结构的奇异根的快速数值收敛。
In this paper we provide a new method to certify that a nearby polynomial system has a singular isolated root with a prescribed multiplicity structure. More precisely, given a polynomial system f $=(f\_1, \ldots, f\_N)\in C[x\_1, \ldots, x\_n]^N$, we present a Newton iteration on an extended deflated system that locally converges, under regularity conditions, to a small deformation of $f$ such that this deformed system has an exact singular root. The iteration simultaneously converges to the coordinates of the singular root and the coefficients of the so called inverse system that describes the multiplicity structure at the root. We use $$α$$-theory test to certify the quadratic convergence, and togive bounds on the size of the deformation and on the approximation error. The approach relies on an analysis of the punctual Hilbert scheme, for which we provide a new description. We show in particular that some of its strata can be rationally parametrized and exploit these parametrizations in the certification. We show in numerical experimentation how the approximate inverse system can be computed as a starting point of the Newton iterations and the fast numerical convergence to the singular root with its multiplicity structure, certified by our criteria.