论文标题

吉尔伯特·埃利奥特服务器和采样器的信息年龄

Age of Information with Gilbert-Elliot Servers and Samplers

论文作者

Buyukates, Baturalp, Ulukus, Sennur

论文摘要

我们在状态更新系统中研究信息的年龄,该系统由单个采样器(即源节点)组成,该采样器通过服务器节点向单个监视器节点发送时间敏感的状态更新。我们首先在服务器节点上考虑Gilbert-elliot服务配置文件。在此模型中,服务器节点的服务时间遵循有两个状态的有限状态马尔可夫链:$ {bad} $状态$ b $和$ {good} $状态$ g $,其中服务器在状态$ g $中更快。我们确定了监视器节点所经历的平均年龄,并在服务操作上有和没有平均成本限制的情况下表征了年龄在最佳状态过渡矩阵$ p $。接下来,我们考虑源头的吉尔伯特·埃利奥特采样曲线。在此模型中,Arrarival Times遵循有限的州Markov链带有两个状态:$ {bad} $状态$ b $和$ {good} $ state $ g $,其中样本在状态$ g $中更为频繁。我们发现监视器节点所经历的平均年龄,并表征了年龄在最佳状态过渡矩阵$ p $。

We study age of information in a status updating system that consists of a single sampler, i.e., source node, that sends time-sensitive status updates to a single monitor node through a server node. We first consider a Gilbert-Elliot service profile at the server node. In this model, service times at the server node follow a finite state Markov chain with two states: ${bad}$ state $b$ and ${good}$ state $g$ where the server is faster in state $g$. We determine the time average age experienced by the monitor node and characterize the age-optimal state transition matrix $P$ with and without an average cost constraint on the service operation. Next, we consider a Gilbert-Elliot sampling profile at the source. In this model, the interarrival times follow a finite state Markov chain with two states: ${bad}$ state $b$ and ${good}$ state $g$ where samples are more frequent in state $g$. We find the time average age experienced by the monitor node and characterize the age-optimal state transition matrix $P$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源