论文标题
分类器分类:解剖神经网络的重量空间
Classifying the classifier: dissecting the weight space of neural networks
论文作者
论文摘要
本文介绍了一项关于神经网络重量的经验研究,我们将每个模型解释为高维空间中的一个点 - 神经体重空间。为了探索该空间的复杂结构,我们从神经网络分类器的各种培训变化(数据集,优化过程,体系结构等)中进行了采样,并训练大量模型以表示体重空间。然后,我们使用一种机器学习方法来分析和从该领域提取信息。在大多数情况下,我们训练许多新型的深度元分类器,目的是通过识别其在体重空间中的足迹来对训练设置的不同特性进行分类。因此,元分类器探测了由超参数诱导的模式,以便我们可以量化通过优化过程对它们进行了多少,何时和何时编码。这为可解释的AI提供了一种新颖的互补视图,我们仅考虑一小部分随机选择的连续权重来显示元分类器如何揭示有关训练设置和优化的大量信息。为了促进对体重空间的进一步研究,我们发布了神经体重空间(NWS)数据集,这是来自16k个单独训练的深神经网络的320k重量快照的集合。
This paper presents an empirical study on the weights of neural networks, where we interpret each model as a point in a high-dimensional space -- the neural weight space. To explore the complex structure of this space, we sample from a diverse selection of training variations (dataset, optimization procedure, architecture, etc.) of neural network classifiers, and train a large number of models to represent the weight space. Then, we use a machine learning approach for analyzing and extracting information from this space. Most centrally, we train a number of novel deep meta-classifiers with the objective of classifying different properties of the training setup by identifying their footprints in the weight space. Thus, the meta-classifiers probe for patterns induced by hyper-parameters, so that we can quantify how much, where, and when these are encoded through the optimization process. This provides a novel and complementary view for explainable AI, and we show how meta-classifiers can reveal a great deal of information about the training setup and optimization, by only considering a small subset of randomly selected consecutive weights. To promote further research on the weight space, we release the neural weight space (NWS) dataset -- a collection of 320K weight snapshots from 16K individually trained deep neural networks.