论文标题
天的部分$ c^0 $ esstimate意味着汉密尔顿 - 蒂恩的猜想
Tian's partial $C^0$-estimate implies Hamilton-Tian's conjecture
论文作者
论文摘要
在本文中,我们证明了Kähler-Icci流的汉密尔顿 - 蒂恩(Hamilton-tian)的猜想,这是基于Liu-székelyHidi的最新作品,该作品对Tian的部分$ C^0 $ c^0 $ estimate for PoralizedKähler指标,其ricci的ricci ricci以下面的边界为边界。还将讨论Yau-tian-Donaldson在Fano歧管上存在Kähler-Einstein指标的猜想。
In this paper, we prove the Hamilton-Tian conjecture for Kähler-Ricci flow based on a recent work of Liu-Székelyhidi on Tian's partical $C^0$-estimate for poralized Kähler metrics with Ricci bounded below. The Yau-Tian-Donaldson conjecture for the existence of Kähler-Einstein metrics on Fano manifolds will be also discussed.