论文标题
结构型前类别的结构常数
Structure constants for pre-modular categories
论文作者
论文摘要
在本文中,我们研究了关键融合类别的共轭类。特别是,我们证明了有关此类融合类别的两个共轭类总和的结构常数的伯侧类型公式。对于一个编织的弱积分融合类别$ \ MATHCAL C $,我们表明,这些结构常数乘以$ \ Mathrm {dim}(\ Mathcal c)$是非负整数,扩大了Zhou and Zhu和Zhu获得的一些结果(请参见setiSimimirian of emisimirian of emisimirian guasrian emimirian guasrian guasrian guasrian guasrian emimrian guasrian。
In this paper we study conjugacy classes for pivotal fusion categories. In particular we prove a Burnside type formula for the structure constants concerning the product of two conjugacy class sums of a such fusion category. For a braided weakly integral fusion category $\mathcal C$ we show that these structure constants multiplied by $\mathrm{dim}(\mathcal C)$ are non-negative integers, extending some results obtained by Zhou and Zhu (see \cite{zz}) in the settings of semisimple quasitriangular Hopf algebras.