论文标题

复杂网络的最低​​度分解

Lowest Degree Decomposition of Complex Networks

论文作者

Yu, Yong, Jing, Ming, Zhao, Na, Zhou, Tao

论文摘要

异质结构意味着,很少有节点在维持大规模网络的结构和功能性能中起关键作用。识别这些重要的节点是网络科学中最重要的任务之一,它使我们能够更好地开展成功的社交广告,免疫网络抵抗流行病,发现药物目标候选者和必需蛋白质,并防止电网,金融市场和生态系统中的级联分解。受实际网络嵌套本质的启发,我们提出了一种分解方法,在每个步骤中,最低度的节点被修剪。我们严格证明,这种所谓的最低度分解(LDD)是著名的K核分解的一个细分。对流行病扩散,同步和非线性互助动态的广泛数值分析表明,与K核分解和其他知名的独立组合相比,LDD可以更准确地发现最具影响力的散布器,最有效的控制器和最脆弱的物种。本方法仅利用本地拓扑信息,因此具有很高的潜力,可以成为网络分析的强大工具。

The heterogeneous structure implies that a very few nodes may play the critical role in maintaining structural and functional properties of a large-scale network. Identifying these vital nodes is one of the most important tasks in network science, which allow us to better conduct successful social advertisements, immunize a network against epidemics, discover drug target candidates and essential proteins, and prevent cascading breakdowns in power grids, financial markets and ecological systems. Inspired by the nested nature of real networks, we propose a decomposition method where at each step the nodes with the lowest degree are pruned. We have strictly proved that this so-called lowest degree decomposition (LDD) is a subdivision of the famous k-core decomposition. Extensive numerical analyses on epidemic spreading, synchronization and nonlinear mutualistic dynamics show that the LDD can more accurately find out the most influential spreaders, the most efficient controllers and the most vulnerable species than k-core decomposition and other well-known indices. The present method only makes use of local topological information, and thus has high potential to become a powerful tool for network analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源