论文标题

预测基于晶格的出生死亡模型中的人口灭绝

Predicting population extinction in lattice-based birth-death-movement models

论文作者

Johnston, Stuart T., Simpson, Matthew J., Crampin, Edmund J.

论文摘要

在整个生态学和生物学中,人口是否会持续或灭绝的问题是关键的利益。各种数学技术使我们能够产生有关个人行为的知识,可以分析这些知识以获得有关人口最终生存或灭绝的预测。一种用于描述人口动态的通用模型是基于晶格的随机步行模型,具有拥挤(排除)。该模型可以结合出生,死亡和运动等行为,同时包括自然现象,例如有限尺寸效应。对随机步行模型进行足够多的实现来提取代表性的人口行为是计算密集型的。因此,通常使用随机步行模型的连续近似值。但是,众所周知,标准的连续体近似无法对人口灭绝做出准确的预测。在这里,我们开发了一个新的连续近似值,即状态空间扩散近似,该近似明确解释了人口灭绝。我们近似中的预测忠实地捕获了随机步行模型中的行为,并与标准近似相比提供了其他信息。我们检查了晶格位点的数量和个体对长期人口行为的初始数量的影响,并证明了随机步行模型与我们的近似值之间的计算时间减少。

The question of whether a population will persist or go extinct is of key interest throughout ecology and biology. Various mathematical techniques allow us to generate knowledge regarding individual behaviour, which can be analysed to obtain predictions about the ultimate survival or extinction of the population. A common model employed to describe population dynamics is the lattice-based random walk model with crowding (exclusion). This model can incorporate behaviour such as birth, death and movement, while including natural phenomena such as finite size effects. Performing sufficiently many realisations of the random walk model to extract representative population behaviour is computationally intensive. Therefore, continuum approximations of random walk models are routinely employed. However, standard continuum approximations are notoriously incapable of making accurate predictions about population extinction. Here, we develop a new continuum approximation, the state space diffusion approximation, which explicitly accounts for population extinction. Predictions from our approximation faithfully capture the behaviour in the random walk model, and provides additional information compared to standard approximations. We examine the influence of the number of lattice sites and initial number of individuals on the long-term population behaviour, and demonstrate the reduction in computation time between the random walk model and our approximation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源