论文标题

保护消费者免受个性化定价:停止时间的方法

Protecting Consumers Against Personalized Pricing: A Stopping Time Approach

论文作者

Dong, Roy, Miehling, Erik, Langbort, Cedric

论文摘要

行为数据的广泛可用性导致了数据驱动的个性化定价算法的发展:卖方试图通过估计消费者的付费意愿和定价来最大程度地提高收入。我们的目标是开发保护消费者利益免受个性化定价方案的算法。在本文中,我们考虑了一个消费者,他越来越多地了解到跨时间的潜在购买,同时向潜在卖方揭示了越来越多的有关自己的信息。当与使用个性化定价算法的卖方互动时,我们将战略消费者的购买决定正式化,并在最佳停止时间理论和计算融资中对现有文献中的这个问题进行上下文化。我们提供了一种算法,消费者可以使用该算法来保护自己的利益免受个性化定价算法。这种算法停止方法使用示例路径来训练最佳停止时间的估计。据我们所知,这是最早为消费者提供计算方法的作品之一,以在监视下决策时最大化其效用。我们使用数值模拟证明了算法停止方法的功效,其中卖方使用卡尔曼过滤器来近似消费者的估值,并根据近视预期的收入最大化设定价格。与近视采购策略相比,我们证明了预期消费者的收益增加。

The widespread availability of behavioral data has led to the development of data-driven personalized pricing algorithms: sellers attempt to maximize their revenue by estimating the consumer's willingness-to-pay and pricing accordingly. Our objective is to develop algorithms that protect consumer interests against personalized pricing schemes. In this paper, we consider a consumer who learns more and more about a potential purchase across time, while simultaneously revealing more and more information about herself to a potential seller. We formalize a strategic consumer's purchasing decision when interacting with a seller who uses personalized pricing algorithms, and contextualize this problem among the existing literature in optimal stopping time theory and computational finance. We provide an algorithm that consumers can use to protect their own interests against personalized pricing algorithms. This algorithmic stopping method uses sample paths to train estimates of the optimal stopping time. To the best of our knowledge, this is one of the first works that provides computational methods for the consumer to maximize her utility when decision making under surveillance. We demonstrate the efficacy of the algorithmic stopping method using a numerical simulation, where the seller uses a Kalman filter to approximate the consumer's valuation and sets prices based on myopic expected revenue maximization. Compared to a myopic purchasing strategy, we demonstrate increased payoffs for the consumer in expectation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源