论文标题

使用机器学习和随机优化的基于Fe的软磁材料的加速设计

Accelerated design of Fe-based soft magnetic materials using machine learning and stochastic optimization

论文作者

Wang, Yuhao, Tian, Yefan, Kirk, Tanner, Laris, Omar, Ross, Jr., Joseph H., Noebe, Ronald D., Keylin, Vladimir, Arróyave, Raymundo

论文摘要

机器学习被用来有效增强软磁性材料的开发。设计过程包括构建一个由已发布的实验结果组成的数据库,在数据库上应用机器学习方法,确定软磁性材料中磁性的趋势,并通过使用数值优化来加速下一代软磁性纳米晶体材料的设计。对机器学习回归模型进行了训练,以预测磁饱和度($ b_s $),强化($ h_c $)和磁截图($λ$),并使用随机优化框架进一步优化相应的磁性特性。为了验证机器学习模型的可行性,已经预测然后准备和测试,几种优化的软磁材料(根据组成和热力学处理方式指定),显示了预测和实验之间的良好一致性,证明了设计模型的可靠性。进行了两轮优化测试迭代,以搜索更好的特性。

Machine learning was utilized to efficiently boost the development of soft magnetic materials. The design process includes building a database composed of published experimental results, applying machine learning methods on the database, identifying the trends of magnetic properties in soft magnetic materials, and accelerating the design of next-generation soft magnetic nanocrystalline materials through the use of numerical optimization. Machine learning regression models were trained to predict magnetic saturation ($B_S$), coercivity ($H_C$) and magnetostriction ($λ$), with a stochastic optimization framework being used to further optimize the corresponding magnetic properties. To verify the feasibility of the machine learning model, several optimized soft magnetic materials -- specified in terms of compositions and thermomechanical treatments -- have been predicted and then prepared and tested, showing good agreement between predictions and experiments, proving the reliability of the designed model. Two rounds of optimization-testing iterations were conducted to search for better properties.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源