论文标题

用于部分观察到的交互系统的装袋过滤器

Bagged filters for partially observed interacting systems

论文作者

Ionides, Edward L., Asfaw, Kidus, Park, Joonha, King, Aaron A.

论文摘要

装袋(即引导程序聚集)涉及组合自举估计器的合奏。我们考虑从相互作用的随机动态系统集合中进行推断的推断或不完整的测量。每个系统称为一个单元,每个单元都与空间位置关联。流行病学中出现了一个激励的例子,每个单元是一个城市:大多数传播发生在一个城市内,而城市之间的疾病传播引起了较小但流行病学上重要的相互作用。用于推断非线性非高斯系统的蒙特卡洛滤波方法可能会随着单位数量的增加而受到维数的诅咒。我们介绍了使用时空定位的权重,将蒙特卡洛过滤器集合结合在一起,该方法结合了蒙特卡洛过滤器的合奏,以在每个单元和时间选择成功的过滤器。我们获得了使用BF算法评估的可能性评估的条件,即使这些条件不满足,我们也可以证明适用性。 BF可以在描述传染病传播的耦合种群动力学模型上表现出合奏的卡尔曼过滤器。块粒子滤波器在此任务上也表现良好,尽管包装的过滤器尊重块粒子滤清器可能会违反的平滑度和保护定律。

Bagging (i.e., bootstrap aggregating) involves combining an ensemble of bootstrap estimators. We consider bagging for inference from noisy or incomplete measurements on a collection of interacting stochastic dynamic systems. Each system is called a unit, and each unit is associated with a spatial location. A motivating example arises in epidemiology, where each unit is a city: the majority of transmission occurs within a city, with smaller yet epidemiologically important interactions arising from disease transmission between cities. Monte Carlo filtering methods used for inference on nonlinear non-Gaussian systems can suffer from a curse of dimensionality as the number of units increases. We introduce bagged filter (BF) methodology which combines an ensemble of Monte Carlo filters, using spatiotemporally localized weights to select successful filters at each unit and time. We obtain conditions under which likelihood evaluation using a BF algorithm can beat a curse of dimensionality, and we demonstrate applicability even when these conditions do not hold. BF can out-perform an ensemble Kalman filter on a coupled population dynamics model describing infectious disease transmission. A block particle filter also performs well on this task, though the bagged filter respects smoothness and conservation laws that a block particle filter can violate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源