论文标题

时间不均匀的高斯随机波动率模型:较大的偏差和超粗糙度

Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness

论文作者

Gulisashvili, Archil

论文摘要

我们介绍了时间不均匀的随机波动率模型,其中挥发性通过伏尔泰拉型连续高斯过程的非负功能描述,该过程可能具有非常粗糙的样品路径。本文在本文中获得的主要结果是在非常轻微的限制下,在时间固定的超级粗糙高斯模型中,对数价格过程的样本路径和小噪声偏差原理。我们使用这些结果来研究二元屏障选项的渐近行为,退出时间概率功能和呼叫选项。

We introduce time-inhomogeneous stochastic volatility models, in which the volatility is described by a nonnegative function of a Volterra type continuous Gaussian process that may have very rough sample paths. The main results obtained in the paper are sample path and small-noise large deviation principles for the log-price process in a time-inhomogeneous super rough Gaussian model under very mild restrictions. We use these results to study the asymptotic behavior of binary barrier options, exit time probability functions, and call options.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源