论文标题

$(5)$ landau型号和嵌套的nambu矩阵几何形状

$SO(5)$ Landau Models and Nested Nambu Matrix Geometry

论文作者

Hasebe, Kazuki

论文摘要

$ SO(5)$ LANDAU模型是4D量子厅效应的数学平台,为实现模糊四个球的物理实现提供了难得的机会。我们对$(5)$ landau模型和通过Landau级别投影的相关矩阵几何形状进行了综合分析。 With the $SO(5)$ monopole harmonics, we explicitly derive matrix geometry of a four-sphere in any Landau level: In the lowest Landau level the matrix coordinates are given by the generalized $SO(5)$ gamma matrices of the fuzzy four-sphere satisfying the quantum Nambu algebra, while in higher Landau levels the matrix geometry becomes a nested模糊的结构实现了纯量子几何形状,而在古典几何形状中没有对应物。在$(4)$ Pauli-Schrödinger模型和$ SO(4)$ Landau模型的视图中,讨论了内部模糊几何结构,我们在其背景非亚洲字段配置之间揭开了隐藏的奇异仪表转换。还研究了$(5)$ landau模型的相对论版本,并阐明了与Berezin-Toeplitz量化的关系。我们最终在更高的维度上讨论了Landau模型的矩阵几何形状。

The $SO(5)$ Landau model is the mathematical platform of the 4D quantum Hall effect and provide a rare opportunity for a physical realization of the fuzzy four-sphere. We present an integrated analysis of the $SO(5)$ Landau models and the associated matrix geometries through the Landau level projection. With the $SO(5)$ monopole harmonics, we explicitly derive matrix geometry of a four-sphere in any Landau level: In the lowest Landau level the matrix coordinates are given by the generalized $SO(5)$ gamma matrices of the fuzzy four-sphere satisfying the quantum Nambu algebra, while in higher Landau levels the matrix geometry becomes a nested fuzzy structure realizing a pure quantum geometry with no counterpart in classical geometry. The internal fuzzy geometry structure is discussed in the view of an $SO(4)$ Pauli-Schrödinger model and the $SO(4)$ Landau model, where we unveil a hidden singular gauge transformation between their background non-Abelian field configurations. Relativistic versions of the $SO(5)$ Landau model are also investigated and relationship to the Berezin-Toeplitz quantization is clarified. We finally discuss the matrix geometry of the Landau models in even higher dimensions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源