论文标题

从IC布局到模具照片:基于CNN的数据驱动方法

From IC Layout to Die Photo: A CNN-Based Data-Driven Approach

论文作者

Shao, Hao-Chiang, Peng, Chao-Yi, Wu, Jun-Rei, Lin, Chia-Wen, Fang, Shao-Yun, Tsai, Pin-Yen, Liu, Yan-Hsiu

论文摘要

我们提出了一个由两个卷积神经网络组成的深度学习数据驱动的框架:i)静脉注:由于IC制造而导致的电路上的形状变形,ii)ii)opcnet提出了IC布局校正以补偿这种形状变形。通过学习布局设计模式对之间的形状对应关系及其扫描电子显微镜(SEM)的晶状体晶片图像,鉴于IC布局模式,Lithonet可以模拟制造过程以预测其制作的电路形状。此外,Lithonet可以将晶圆制造参数作为潜在矢量来建模可以在SEM图像上检查的参数产品变化。此外,用于暗示对印刷照片矫正的传统光学接近校正方法(OPC)在计算上是昂贵的。我们提出的OPCNET模拟了OPC过程,并通过与Lithonet合作检查制造电路的形状是否最佳地匹配其原始布局设计,从而有效地生成了校正后的光掩模。结果,所提出的岩石网框架不仅可以预测其布局模式制造的IC的形状,而且还建议根据预测形状和给定​​布局之间的一致性进行布局校正。具有几种基准布局模式的实验结果证明了该方法的有效性。

We propose a deep learning-based data-driven framework consisting of two convolutional neural networks: i) LithoNet that predicts the shape deformations on a circuit due to IC fabrication, and ii) OPCNet that suggests IC layout corrections to compensate for such shape deformations. By learning the shape correspondences between pairs of layout design patterns and their scanning electron microscope (SEM) images of the product wafer thereof, given an IC layout pattern, LithoNet can mimic the fabrication process to predict its fabricated circuit shape. Furthermore, LithoNet can take the wafer fabrication parameters as a latent vector to model the parametric product variations that can be inspected on SEM images. Besides, traditional optical proximity correction (OPC) methods used to suggest a correction on a lithographic photomask is computationally expensive. Our proposed OPCNet mimics the OPC procedure and efficiently generates a corrected photomask by collaborating with LithoNet to examine if the shape of a fabricated circuit optimally matches its original layout design. As a result, the proposed LithoNet-OPCNet framework can not only predict the shape of a fabricated IC from its layout pattern, but also suggests a layout correction according to the consistency between the predicted shape and the given layout. Experimental results with several benchmark layout patterns demonstrate the effectiveness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源