论文标题

正顺序函数的非线性schrödinger方程:I。基态的存在

The nonlinear Schrödinger equation for orthonormal functions: I. Existence of ground states

论文作者

Gontier, David, Lewin, Mathieu, Nazar, Faizan Q.

论文摘要

我们研究了$ n $正交功能系统的非线性schrödinger方程。当非线性的指数$ p $不太大时,我们证明了所有$ n $的基础状态,而对于无限n_j $的无限序列$ n_j $倾向于在可能的整个可能的$ p $'s中,d \ geq1 $。这使我们能够证明,对于具有较大狄拉克交换常数的Kohn-Sham模型中的量子晶体,翻译对称性被打破。

We study the nonlinear Schrödinger equation for systems of $N$ orthonormal functions. We prove the existence of ground states for all $N$ when the exponent $p$ of the non linearity is not too large, and for an infinite sequence $N_j$ tending to infinity in the whole range of possible $p$'s, in dimensions $d\geq1$. This allows us to prove that translational symmetry is broken for a quantum crystal in the Kohn-Sham model with a large Dirac exchange constant.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源