论文标题
通过综合方法对2019-NCOV传输结束的预测
Predictions of 2019-nCoV Transmission Ending via Comprehensive Methods
论文作者
论文摘要
自2003年SARS爆发以来,已经提出了许多预测性流行病学模型。在2019年底,一家名为2019-NCOV的小说冠状病毒已经爆发并在中国和世界上传播。在这里,我们提出了一种多模型的普通微分方程集神经网络(MMODES-NN)和无模型方法,以预测中国大陆的省际传输,尤其是来自荷叶省的传播。与先前提出的流行病学模型相比,所提出的网络可以使用ODES激活方法模拟传输,而基于Sigmoid函数,高斯函数和Poisson分布的无模型方法是线性的,可以快速生成合理的预测。根据数值实验和现实性,控制该疾病的特殊政策在某些省份成功了,流行病的传播接近中国春季节旅行的爆发时间,更有可能在2月18日之前下降,并在2020年4月之前结束之前。我们预计我们的工作将成为2019-NCOV全面预测研究的起点。
Since the SARS outbreak in 2003, a lot of predictive epidemiological models have been proposed. At the end of 2019, a novel coronavirus, termed as 2019-nCoV, has broken out and is propagating in China and the world. Here we propose a multi-model ordinary differential equation set neural network (MMODEs-NN) and model-free methods to predict the interprovincial transmissions in mainland China, especially those from Hubei Province. Compared with the previously proposed epidemiological models, the proposed network can simulate the transportations with the ODEs activation method, while the model-free methods based on the sigmoid function, Gaussian function, and Poisson distribution are linear and fast to generate reasonable predictions. According to the numerical experiments and the realities, the special policies for controlling the disease are successful in some provinces, and the transmission of the epidemic, whose outbreak time is close to the beginning of China Spring Festival travel rush, is more likely to decelerate before February 18 and to end before April 2020. The proposed mathematical and artificial intelligence methods can give consistent and reasonable predictions of the 2019-nCoV ending. We anticipate our work to be a starting point for comprehensive prediction researches of the 2019-nCoV.