论文标题

嘈杂阈值$ q $ - 投票模型的近似

Pair approximation for the noisy threshold $q$-voter model

论文作者

Vieira, A. R., Peralta, Antonio F., Toral, Raul, Miguel, Maxi San, Anteneodo, C.

论文摘要

在标准$ Q $投票模型中,只有在大小$ q $的一组影响组中,给定代理人才能更改其意见。更现实的扩展名是阈值$ q $ - 投票,其中最少的协议(至少$ 0 <q_0 \ le q $相反的意见)足以翻转中央代理商的意见,包括独立(非综合主义)选择的可能性。以前已经在完全连接的网络(平均场限制)中研究了该模型的变体。在这里,我们在随机网络中研究了它的动态。特别是,尽管在平均野外情况下,是否允许在影响组中重复进行重复,但我们表明在网络中不是这种情况,并且我们研究两种情况的影响,无论是否没有重复。此外,将计算机模拟的结果与对任意度分布的不相关网络得出的对近似的预测进行了比较。

In the standard $q$-voter model, a given agent can change its opinion only if there is a full consensus of the opposite opinion within a group of influence of size $q$. A more realistic extension is the threshold $q$-voter, where a minimal agreement (at least $0<q_0\le q$ opposite opinions) is sufficient to flip the central agent's opinion, including also the possibility of independent (non conformist) choices. Variants of this model including non-conformist behavior have been previously studied in fully connected networks (mean-field limit). Here we investigate its dynamics in random networks. Particularly, while in the mean-field case it is irrelevant whether repetitions in the influence group are allowed, we show that this is not the case in networks, and we study the impact of both cases, with or without repetition. Furthermore, the results of computer simulations are compared with the predictions of the pair approximation derived for uncorrelated networks of arbitrary degree distributions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源