论文标题

tdefsi:理论指导了基于深度学习的流行预测,并带有合成信息

TDEFSI: Theory Guided Deep Learning Based Epidemic Forecasting with Synthetic Information

论文作者

Wang, Lijing, Chen, Jiangzhuo, Marathe, Madhav

论文摘要

流感样疾病(ILI)给我们的社会带来了沉重的社会和经济负担。传统上,ILI监视数据每周更新,并以空间粗糙的分辨率提供。产生及时且可靠的高分辨率时空预测ILI对于局部准备和最佳干预措施至关重要。我们提出了TDEFSI(理论是基于深度学习的流行病预测与合成信息),这是一个流行病预测框架,该框架整合了深神经网络的优势和对网络流行过程的高分辨率模拟。 TDEFSI使用低分辨率时间序列数据得出准确的高分辨率时空预测。在训练阶段,TDEFSI使用高分辨率模拟的流行病,这些模拟明确地模拟了城市地区固有的空间和社会异质性,这是培训数据的一个组成部分。我们训练一个两条复发的神经网络模型,以季节和季节间低分辨率观察为特征,并将输出高分辨率的详细预测作为特征。由此产生的预测不仅是由观察到的数据驱动的,而且还捕获了特定城市地区的复杂社会,人口和地理属性以及网络上疾病传播的数学理论。我们专注于预测ILI的发病率,并使用美国州和县级的合成和现实测试数据集评估TDEFSI的性能。结果表明,在州一级,我们的方法比几种最先进的方法实现了可比/更好的性能。在县一级,TDEFSI的表现优于其他方法。提出的方法也可以应用于其他传染病。

Influenza-like illness (ILI) places a heavy social and economic burden on our society. Traditionally, ILI surveillance data is updated weekly and provided at a spatially coarse resolution. Producing timely and reliable high-resolution spatiotemporal forecasts for ILI is crucial for local preparedness and optimal interventions. We present TDEFSI (Theory Guided Deep Learning Based Epidemic Forecasting with Synthetic Information), an epidemic forecasting framework that integrates the strengths of deep neural networks and high-resolution simulations of epidemic processes over networks. TDEFSI yields accurate high-resolution spatiotemporal forecasts using low-resolution time series data. During the training phase, TDEFSI uses high-resolution simulations of epidemics that explicitly model spatial and social heterogeneity inherent in urban regions as one component of training data. We train a two-branch recurrent neural network model to take both within-season and between-season low-resolution observations as features, and output high-resolution detailed forecasts. The resulting forecasts are not just driven by observed data but also capture the intricate social, demographic and geographic attributes of specific urban regions and mathematical theories of disease propagation over networks. We focus on forecasting the incidence of ILI and evaluate TDEFSI's performance using synthetic and real-world testing datasets at the state and county levels in the USA. The results show that, at the state level, our method achieves comparable/better performance than several state-of-the-art methods. At the county level, TDEFSI outperforms the other methods. The proposed method can be applied to other infectious diseases as well.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源