论文标题
对藤田在积极特征中表面上的猜想的反例
Counterexamples to Fujita's conjecture on surfaces in positive characteristic
论文作者
论文摘要
我们在积极特征上介绍了藤田的猜想。确切地说,我们表明,在任何代数封闭的特征$ p> 0 $的封闭式字段$ k $上,对于任何正整数$ m $,都存在一个光滑的投射表面$ s $,带有宽敞的卡地台divisor $ a $,因此邻接线性系统$ | k_s+ma | $是基本点的免费。我们的表面$ S $是Raynaud表面的某种概括。
We present counterexamples to Fujita's conjecture in positive characteristics. Precisely, we show that over any algebraically closed field $k$ of characteristic $p>0$ and for any positive integer $m$, there exists a smooth projective surface $S$ with an ample Cartier divisor $A$ such that the adjoint linear system $|K_S+mA|$ is not free of base point. Our surface $S$ is a certain kind of generalization of Raynaud surfaces.