论文标题

障碍阵列的扩散:超越均匀化

Diffusion in arrays of obstacles: beyond homogenisation

论文作者

Farah, Yahya, Loghin, Daniel, Tzella, Alexandra, Vanneste, Jacques

论文摘要

我们重新审视了在二维介质中释放出具有嵌入式周期性不可渗透障碍(例如穿孔)的标量(或热量)的经典问题。同质化理论在很大程度上提供了标量的粗粒描述,并预测它会以一定的有效扩散率扩散,因此浓度大约是高斯。我们通过开发大型驱动近似来改善这一点,该近似也通过解决特征值问题获得的速率函数来捕获浓度的非高斯尾巴。我们专注于圆柱障碍物和密集的极限,当障碍占据很大的面积分数和非高斯的障碍时。我们在此限制下得出速率函数的渐近近似,在较大距离范围内有效。我们使用有限元实现来解决特征值问题,从而产生了任意障碍区域分数的速率函数,以及在渐近学计算中产生的椭圆边界值问题。数值结果与渐近预测之间的比较证实了后者的有效性。

We revisit the classical problem of diffusion of a scalar (or heat) released in a two-dimensional medium with an embedded periodic array of impermeable obstacles such as perforations. Homogenisation theory provides a coarse-grained description of the scalar at large times and predicts that it diffuses with a certain effective diffusivity, so the concentration is approximately Gaussian. We improve on this by developing a large-deviation approximation which also captures the non-Gaussian tails of the concentration through a rate function obtained by solving a family of eigenvalue problems. We focus on cylindrical obstacles and on the dense limit, when the obstacles occupy a large area fraction and non-Gaussianity is most marked. We derive an asymptotic approximation for the rate function in this limit, valid uniformly over a wide range of distances. We use finite-element implementations to solve the eigenvalue problems yielding the rate function for arbitrary obstacle area fractions and an elliptic boundary-value problem arising in the asymptotics calculation. Comparison between numerical results and asymptotic predictions confirm the validity of the latter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源