论文标题

Pymoo:Python中的多目标优化

pymoo: Multi-objective Optimization in Python

论文作者

Blank, Julian, Deb, Kalyanmoy

论文摘要

Python已成为与数据科学,机器学习和深度学习相关的研究和行业项目首选的编程语言。由于优化是这些研究领域的固有部分,因此在过去几年中出现了更多相关框架。他们中只有少数人一次支持对多个冲突目标的优化,但没有为完整的多目标优化任务提供全面的工具。为了解决这个问题,我们开发了Pymoo,这是Python中的多目标优化框架。我们通过证明实现示例性约束多目标优化方案的实现,为我们的框架起步提供了指南。此外,我们对Pymoo的体系结构进行了高级概述,以显示其功能,然后对每个模块及其相应的子模块进行解释。我们框架中的实现是可自定义的,并且可以通过提供自定义操作员来修改/扩展算法。此外,提供了各种单一,多目标测试问题,可以通过开箱即用的自动分化来检索梯度。此外,Pymoo还满足了实际需求,例如功能评估的并行化,可视化低维空间的方法以及用于多准则决策的工具。有关Pymoo的更多信息,鼓励读者访问:https://pymoo.org

Python has become the programming language of choice for research and industry projects related to data science, machine learning, and deep learning. Since optimization is an inherent part of these research fields, more optimization related frameworks have arisen in the past few years. Only a few of them support optimization of multiple conflicting objectives at a time, but do not provide comprehensive tools for a complete multi-objective optimization task. To address this issue, we have developed pymoo, a multi-objective optimization framework in Python. We provide a guide to getting started with our framework by demonstrating the implementation of an exemplary constrained multi-objective optimization scenario. Moreover, we give a high-level overview of the architecture of pymoo to show its capabilities followed by an explanation of each module and its corresponding sub-modules. The implementations in our framework are customizable and algorithms can be modified/extended by supplying custom operators. Moreover, a variety of single, multi and many-objective test problems are provided and gradients can be retrieved by automatic differentiation out of the box. Also, pymoo addresses practical needs, such as the parallelization of function evaluations, methods to visualize low and high-dimensional spaces, and tools for multi-criteria decision making. For more information about pymoo, readers are encouraged to visit: https://pymoo.org

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源