论文标题

在单个指数时间和多项式空间中通过TreeDepth参数的哈密顿循环参数

Hamiltonian Cycle Parameterized by Treedepth in Single Exponential Time and Polynomial Space

论文作者

Nederlof, Jesper, Pilipczuk, Michał, Swennenhuis, Céline M. F., Węgrzycki, Karol

论文摘要

对于TreeWidth $ t $的许多算法问题,标准的动态编程方法给出了带有时间和空间复杂性的算法$ 2^{\ Mathcal {O}} \ CDOT N^{\ MATHCAL N^{\ MATHCAL {O} {O}(O}(1)} $。事实证明,当人们认为更限制的参数treedepth时,通常可以使用该技术的变化来降低对多项式的空间复杂性,同时保留表单$ 2^{\ Mathcal {o}(o}(o}(d)}(d)} \ cdot n^^n^^{\ mathcal iscal iscal {od d.但是,这种方法的转移远非自动。例如,对于连通性限制的问题,标准动态编程技术具有时间和空间复杂性$ 2^{\ Mathcal {o}(t \ log t)} \ cdot n^{\ mathcal {\ nathcal {o}(o}(o}(o}(1)} $,它们在$ t $ time-time contrips上的效果不明显了低treedeppth的图。 Cygan等。 (focs'11)引入了剪切技术,并表明可以在时间和空间复杂性中解决特定类别的连接性约束问题$ 2^{\ MATHCAL {o}(t)} \ cdot n^{\ Mathcal {\ Mathcal {o}(O}(O}(1)} $。最近,Hegerfeld和Kratsch(STACS'20)表明,对于某些问题,剪切技术也可以应用于TreeDeppth的设置,并且具有运行时的算法$ 2^{\ Mathcal {o} {O}(o}(d)}(d)} \ cdot n^^{\ nathcal {\ natecal {o} $ and} $ and和polot oft of。但是,许多重要的问题避开了这种治疗方法,其中最突出的例子是哈密顿周期和最长的路径。 在本文中,我们通过表明汉密尔顿周期,汉密尔顿路径,长周期,长路径和最小周期覆盖的情况来阐明这种情况,所有$ 5^d \ cdot n^{\ Mathcal {o}(1)} $ - 时间和多项式空间算法在TreeDeptepth $ d $ d $上。算法是随机的蒙特卡洛,只有假否定性。

For many algorithmic problems on graphs of treewidth $t$, a standard dynamic programming approach gives an algorithm with time and space complexity $2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}$. It turns out that when one considers the more restrictive parameter treedepth, it is often the case that a variation of this technique can be used to reduce the space complexity to polynomial, while retaining time complexity of the form $2^{\mathcal{O}(d)}\cdot n^{\mathcal{O}(1)}$, where $d$ is the treedepth. This transfer of methodology is, however, far from automatic. For instance, for problems with connectivity constraints, standard dynamic programming techniques give algorithms with time and space complexity $2^{\mathcal{O}(t\log t)}\cdot n^{\mathcal{O}(1)}$ on graphs of treewidth $t$, but it is not clear how to convert them into time-efficient polynomial space algorithms for graphs of low treedepth. Cygan et al. (FOCS'11) introduced the Cut&Count technique and showed that a certain class of problems with connectivity constraints can be solved in time and space complexity $2^{\mathcal{O}(t)}\cdot n^{\mathcal{O}(1)}$. Recently, Hegerfeld and Kratsch (STACS'20) showed that, for some of those problems, the Cut&Count technique can be also applied in the setting of treedepth, and it gives algorithms with running time $2^{\mathcal{O}(d)}\cdot n^{\mathcal{O}(1)}$ and polynomial space usage. However, a number of important problems eluded such a treatment, with the most prominent examples being Hamiltonian Cycle and Longest Path. In this paper we clarify the situation by showing that Hamiltonian Cycle, Hamiltonian Path, Long Cycle, Long Path, and Min Cycle Cover all admit $5^d\cdot n^{\mathcal{O}(1)}$-time and polynomial space algorithms on graphs of treedepth $d$. The algorithms are randomized Monte Carlo with only false negatives.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源