论文标题

基于推理的通用差异游戏的策略一致性

Inference-Based Strategy Alignment for General-Sum Differential Games

论文作者

Peters, Lasse, Fridovich-Keil, David, Tomlin, Claire J., Sunberg, Zachary N.

论文摘要

在多个代理相互作用的许多设置中,每个代理的最佳选择都在很大程度上取决于其他代理的选择。这些耦合的互动是由一般和差异游戏很好地描述的,其中玩家具有不同的目标,状态在连续的时间内发展,最佳游戏可能以许多均衡概念之一的特征,例如NASH平衡。通常,问题承认多个平衡。从这种游戏中单个代理商的角度来看,这种多种解决方案可能会引入有关其他代理商如何行为的不确定性。本文提出了一个通用框架,用于通过推理其他代理的均衡来解决平衡之间的歧义。我们在模拟多人人类机器人导航问题的模拟中证明了这一框架,该问题得出了两个主要的结论:首先,通过推断人类在哪些平衡上运行的情况,该机器人能够更准确地预测轨迹,其次,通过发现并将自己对齐到这种平衡的机器人能够降低所有企业的成本。

In many settings where multiple agents interact, the optimal choices for each agent depend heavily on the choices of the others. These coupled interactions are well-described by a general-sum differential game, in which players have differing objectives, the state evolves in continuous time, and optimal play may be characterized by one of many equilibrium concepts, e.g., a Nash equilibrium. Often, problems admit multiple equilibria. From the perspective of a single agent in such a game, this multiplicity of solutions can introduce uncertainty about how other agents will behave. This paper proposes a general framework for resolving ambiguity between equilibria by reasoning about the equilibrium other agents are aiming for. We demonstrate this framework in simulations of a multi-player human-robot navigation problem that yields two main conclusions: First, by inferring which equilibrium humans are operating at, the robot is able to predict trajectories more accurately, and second, by discovering and aligning itself to this equilibrium the robot is able to reduce the cost for all players.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源