论文标题
在拉伸曲率的鳍片歧管的某些特性上
On Some Properties of Finsler Manifolds of Stretch Curvature
论文作者
论文摘要
本文研究了具有相对非负(分别非阳性),恒定和各向同性拉伸曲率的Finsler指标。特别是,证明每个非riemannian $(α,β)$ - 具有非零恒定标志曲率曲率和非零相对较零的各向同性拉伸曲率,这是在Finsler Geodesics上具有特征性标量常数的尺寸$ n \ geq 3 $。还表明,每个紧凑型鳍式歧管具有相对非负(分别为非阳性)拉伸曲率的曲线都是Landsberg指标。还研究了带有$ 2 $维的相对拉伸曲率的Finsler歧管。
Finsler metrics with relatively non-negative (non-positive, respectively), constant and isotropic stretch curvatures are investigated in this paper. In particular, it is proved that every non-Riemannian $(α, β)$-metric with a nonzero constant flag curvature and a non-zero relatively isotropic stretch curvature over a manifold of dimension $n\geq 3$ is of a characteristic scalar constant over the Finsler geodesics. It is also shown that every compact Finsler manifold with a relatively non-negative (non-positive, respectively) stretch curvature is a Landsberg metric. Finsler manifolds with $2$-dimensional relative stretch curvature are also investigated.