论文标题

使用自回归神经网络对自旋眼镜的蒙特卡洛模拟

Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks

论文作者

McNaughton, B., Milošević, M. V., Perali, A., Pilati, S.

论文摘要

自回归的神经网络正在成为解决经典和量子力学中相关问题的强大计算工具。他们有吸引力的功能之一是,在他们从数据集中学会了概率分布后,它们允许对典型系统配置进行精确有效的采样。在这里,我们采用神经自回旋分布估计量(NADE)来增强马尔可夫链蒙特卡洛(MCMC)模拟自旋玻璃理论的范式古典模型,即二维爱德华兹·汉密尔顿汉密尔顿。我们表明,可以使用使用标准MCMC算法生成的系统配置学习的无监督学习来训练NADE,以准确地模仿Boltzmann分布。然后,训练有素的NADE被用作大都会危机算法的智能提案分布。这使我们能够执行有效的MCMC仿真,即使与NADE学到的概率分布相对应的期望值也不精确,这些模拟也提供了无偏的结果。值得注意的是,我们实施了一个顺序的回火程序,因此,在MCMC模拟中,在较高的温度下,在较高温度下训练的NADE在较低的温度下运行。这允许即使在低温方向上,也可以有效地模拟旋转玻璃模型,从而避免了遇到局部上UPTATE算法驱动的差异相关时间。此外,我们表明,NADE驱动的模拟迅速采样了基础状态配置,为解决二进制优化问题的未来利用铺平了道路。

The autoregressive neural networks are emerging as a powerful computational tool to solve relevant problems in classical and quantum mechanics. One of their appealing functionalities is that, after they have learned a probability distribution from a dataset, they allow exact and efficient sampling of typical system configurations. Here we employ a neural autoregressive distribution estimator (NADE) to boost Markov chain Monte Carlo (MCMC) simulations of a paradigmatic classical model of spin-glass theory, namely the two-dimensional Edwards-Anderson Hamiltonian. We show that a NADE can be trained to accurately mimic the Boltzmann distribution using unsupervised learning from system configurations generated using standard MCMC algorithms. The trained NADE is then employed as smart proposal distribution for the Metropolis-Hastings algorithm. This allows us to perform efficient MCMC simulations, which provide unbiased results even if the expectation value corresponding to the probability distribution learned by the NADE is not exact. Notably, we implement a sequential tempering procedure, whereby a NADE trained at a higher temperature is iteratively employed as proposal distribution in a MCMC simulation run at a slightly lower temperature. This allows one to efficiently simulate the spin-glass model even in the low-temperature regime, avoiding the divergent correlation times that plague MCMC simulations driven by local-update algorithms. Furthermore, we show that the NADE-driven simulations quickly sample ground-state configurations, paving the way to their future utilization to tackle binary optimization problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源