论文标题
介电纳米 - 安南纳斯,用于原子较薄的二维半导体中的应变工程
Dielectric nano-antennas for strain engineering in atomically thin two-dimensional semiconductors
论文作者
论文摘要
原子上薄的二维半导体过渡金属二核苷(TMDS)可以在发生不可逆的损害之前承受大量的应变。这种独特的属性为控制TMD的光学和电子特性提供了一种有希望的途径,例如,通过将其沉积在纳米结构的表面上,在纳米尺度上可以产生依赖位置的应变。在这里,我们展示了在由磷化镀具有的光子纳米 - 安妮纳斯(Gap)制成的光子纳米 - 安妮纳斯(GAP)上放置的单层和双层TMD WSE $ _2 $的应变诱导的修饰。由于有效的耦合与纳米 - 安特纳纳的密闭光学模式,TMD层紧张区域的光致发光(PL)得到了增强。因此,通过遵循PL峰的偏移,我们推断出沉积在不同半径的纳米 - 安妮纳斯上的WSE $ _2 $中的变化。与提出的理论一致,对于WSE $ _2 $单层观察到了最高$ \ $ \%\%$。我们还估计,双层中的$> 3 \%$菌株伴随着这种通常间接带式带式半导体的直接带隙的出现。在低温温度下,我们发现了WSE $ _2 $层最紧张的纳米级部分中激子限制的证据,这也是我们的理论模型所预测的。我们的结果与介电和等离子纳米 - 安妮纳斯的直接相关性表明,原子上薄的半导体中的应变可以用作纳米光子设备中工程轻相互作用的附加参数。
Atomically thin two-dimensional semiconducting transition metal dichalcogenides (TMDs) can withstand large levels of strain before their irreversible damage occurs. This unique property offers a promising route for control of the optical and electronic properties of TMDs, for instance by depositing them on nano-structured surfaces, where position-dependent strain can be produced on the nano-scale. Here, we demonstrate strain-induced modifications of the optical properties of mono- and bilayer TMD WSe$_2 $ placed on photonic nano-antennas made from gallium phosphide (GaP). Photoluminescence (PL) from the strained areas of the TMD layer is enhanced owing to the efficient coupling with the confined optical mode of the nano-antenna. Thus, by following the shift of the PL peak, we deduce the changes in the strain in WSe$_2$ deposited on the nano-antennas of different radii. In agreement with the presented theory, strain up to $\approx 1.4 \%$ is observed for WSe$_2$ monolayers. We also estimate that $>3\%$ strain is achieved in bilayers, accompanied with the emergence of a direct bandgap in this normally indirect-bandgap semiconductor. At cryogenic temperatures, we find evidence of the exciton confinement in the most strained nano-scale parts of the WSe$_2$ layers, as also predicted by our theoretical model. Our results, of direct relevance for both dielectric and plasmonic nano-antennas, show that strain in atomically thin semiconductors can be used as an additional parameter for engineering light-matter interaction in nano-photonic devices.