论文标题

LOCEC:大型在线社交网络中的基于本地社区的边缘分类

LoCEC: Local Community-based Edge Classification in Large Online Social Networks

论文作者

Song, Chonggang, Lin, Qian, Ling, Guohui, Zhang, Zongyi, Chen, Hongzhao, Liao, Jun, Chen, Chuan

论文摘要

在线社交网络中的关系通常意味着现实世界中的社交联系。对关系类型的准确了解使许多应用程序有益于社交广告和建议。最近有人提出了一些尝试,将用户关系分类为预定义的类型,借助于预先标记的关系或关系中的丰富互动特征。不幸的是,在真实的社交平台(例如微信)中,关系特征数据和标签数据都非常稀少,使现有方法无法应用。在本文中,我们对微信关系进行了深入的分析,以确定关系分类任务的主要挑战。为了应对挑战,我们提出了一个基于本地社区的边缘分类(LOCEC)框架,该框架将社交网络中的用户关系分为现实世界的社交连接类型。 LOCEC执行了三相处理,即当地社区检测,社区分类和关系分类,以解决关系特征和关系标签的稀疏问题。此外,LOCEC旨在通过允许并行和分布式处理来处理大规模网络。我们在现实世界中的微信网络上进行了广泛的实验,该网络具有数百亿个边缘,以验证LOCEC的有效性和效率。

Relationships in online social networks often imply social connections in the real world. An accurate understanding of relationship types benefits many applications, e.g. social advertising and recommendation. Some recent attempts have been proposed to classify user relationships into predefined types with the help of pre-labeled relationships or abundant interaction features on relationships. Unfortunately, both relationship feature data and label data are very sparse in real social platforms like WeChat, rendering existing methods inapplicable. In this paper, we present an in-depth analysis of WeChat relationships to identify the major challenges for the relationship classification task. To tackle the challenges, we propose a Local Community-based Edge Classification (LoCEC) framework that classifies user relationships in a social network into real-world social connection types. LoCEC enforces a three-phase processing, namely local community detection, community classification and relationship classification, to address the sparsity issue of relationship features and relationship labels. Moreover, LoCEC is designed to handle large-scale networks by allowing parallel and distributed processing. We conduct extensive experiments on the real-world WeChat network with hundreds of billions of edges to validate the effectiveness and efficiency of LoCEC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源