论文标题
第三级合成指纹生成
Level Three Synthetic Fingerprint Generation
论文作者
论文摘要
当今保护生物识别数据隐私的法律限制正在阻碍指纹识别研究。例如,所有高分辨率指纹数据库都无法公开使用。为了解决这个问题,我们提出了一种新型的混合方法来综合现实的高分辨率指纹。首先,我们改进了手工制作的指纹生成器Anguli,以获取带有汗水和划痕的动态山脊图。然后,我们训练了一个自行车,将这些地图转换为现实的指纹。与其他基于CNN的作品不同,我们可以为相同身份生成几张图像。我们使用我们的方法来创建一个具有7400张图像的合成数据库,以试图推动该领域的进一步研究而不提出法律问题。我们在740张图像中包括了汗孔注释,以鼓励孔检测中的研究发展。在我们的实验中,我们采用了两种指纹匹配方法来确认实际和合成数据库具有相似的性能。我们进行了人类的感知分析,其中六十名志愿者在实际和合成的指纹之间几乎没有差异。鉴于我们也有利地将结果与文献中最先进的作品进行了比较,因此我们的实验表明我们的方法是新的最新技术。
Today's legal restrictions that protect the privacy of biometric data are hampering fingerprint recognition researches. For instance, all high-resolution fingerprint databases ceased to be publicly available. To address this problem, we present a novel hybrid approach to synthesize realistic, high-resolution fingerprints. First, we improved Anguli, a handcrafted fingerprint generator, to obtain dynamic ridge maps with sweat pores and scratches. Then, we trained a CycleGAN to transform these maps into realistic fingerprints. Unlike other CNN-based works, we can generate several images for the same identity. We used our approach to create a synthetic database with 7400 images in an attempt to propel further studies in this field without raising legal issues. We included sweat pore annotations in 740 images to encourage research developments in pore detection. In our experiments, we employed two fingerprint matching approaches to confirm that real and synthetic databases have similar performance. We conducted a human perception analysis where sixty volunteers could hardly differ between real and synthesized fingerprints. Given that we also favorably compare our results with the most advanced works in the literature, our experimentation suggests that our approach is the new state-of-the-art.