论文标题
使用深度学习拆开MAC协议设计优化
Unboxing MAC Protocol Design Optimization Using Deep Learning
论文作者
论文摘要
802.11标准的不断发展的修正案具有大量的物理和MAC层控制参数,以支持跨越应用程序需求和网络动态的不断增长的通信目标。各种设备的显着增长和渗透伴随着支持各种领域和服务的应用数量的巨大增加,这将在无线网络上造成从未见过的负担。但是,挑战是,每个场景都需要不同的无线协议功能和参数设置,以最佳地确定如何调整这些功能和参数以适应不同的网络方案。传统的试用参数调整参数的方法不仅变得难以重复,而且在不同的网络场景中也是次优。在本文中,我们描述了如何利用深入的强化学习框架进行培训,以了解物理和MAC层中不同参数之间的关系,并表明我们的基于学习的方法如何帮助我们了解有关协议设计优化任务的见解。
Evolving amendments of 802.11 standards feature a large set of physical and MAC layer control parameters to support the increasing communication objectives spanning application requirements and network dynamics. The significant growth and penetration of various devices come along with a tremendous increase in the number of applications supporting various domains and services which will impose a never-before-seen burden on wireless networks. The challenge however, is that each scenario requires a different wireless protocol functionality and parameter setting to optimally determine how to tune these functionalities and parameters to adapt to varying network scenarios. The traditional trial-error approach of manual tuning of parameters is not just becoming difficult to repeat but also sub-optimal for different networking scenarios. In this paper, we describe how we can leverage a deep reinforcement learning framework to be trained to learn the relation between different parameters in the physical and MAC layer and show that how our learning-based approach could help us in getting insights about protocol design optimization task.