论文标题
从视觉内容中得出情感和情感:灾难分析用例
Deriving Emotions and Sentiments from Visual Content: A Disaster Analysis Use Case
论文作者
论文摘要
情感分析旨在向实体,对象,产品和服务提取和表达人的看法,观点和情感,使企业能够从消费者那里获得反馈。社交网络和用户在文本,视觉和音频内容中分享其感受,表达和观点的趋势的日益普及在情感分析中为新的机遇和挑战提供了。尽管文献中对文本流的情感分析进行了广泛的探讨,但对图像和视频的情感分析相对较新。本文介绍了视觉情感分析,并将其与文本情感分析进行了对比,重点是该新生研究领域的机遇和挑战。我们还为灾难相关图像作为用例提出了深层视觉分析仪,涵盖了视觉情感分析的不同方面,从数据收集,注释,模型选择,实现和评估开始。我们认为,这种严格的分析将为未来在域中进行研究提供基准。
Sentiment analysis aims to extract and express a person's perception, opinions and emotions towards an entity, object, product and a service, enabling businesses to obtain feedback from the consumers. The increasing popularity of the social networks and users' tendency towards sharing their feelings, expressions and opinions in text, visual and audio content has opened new opportunities and challenges in sentiment analysis. While sentiment analysis of text streams has been widely explored in the literature, sentiment analysis of images and videos is relatively new. This article introduces visual sentiment analysis and contrasts it with textual sentiment analysis with emphasis on the opportunities and challenges in this nascent research area. We also propose a deep visual sentiment analyzer for disaster-related images as a use-case, covering different aspects of visual sentiment analysis starting from data collection, annotation, model selection, implementation and evaluations. We believe such rigorous analysis will provide a baseline for future research in the domain.