论文标题

内核条件平均嵌入的一种测量理论方法

A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings

论文作者

Park, Junhyung, Muandet, Krikamol

论文摘要

我们为条件平均嵌入(CME)提出了一种无操作的,测量理论的方法,作为一个随机变量,在繁殖的核希尔伯特空间中采用值。尽管严格定义了无条件分布的内核平均值嵌入,但现有的条件版本的现有方法取决于严格的假设,阻碍了其分析。我们通过对CME的理论处理来克服这一局限性。我们得出自然回归解释以获得经验估计,并提供了彻底的理论分析,包括普遍的一致性。作为天然副产品,我们获得了最大平均差异和希尔伯特 - 奇特独立标准的条件类似物,并通过模拟证明了它们的行为。

We present an operator-free, measure-theoretic approach to the conditional mean embedding (CME) as a random variable taking values in a reproducing kernel Hilbert space. While the kernel mean embedding of unconditional distributions has been defined rigorously, the existing operator-based approach of the conditional version depends on stringent assumptions that hinder its analysis. We overcome this limitation via a measure-theoretic treatment of CMEs. We derive a natural regression interpretation to obtain empirical estimates, and provide a thorough theoretical analysis thereof, including universal consistency. As natural by-products, we obtain the conditional analogues of the maximum mean discrepancy and Hilbert-Schmidt independence criterion, and demonstrate their behaviour via simulations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源