论文标题

带有奇异阻尼的阻尼波方程

The damped wave equation with singular damping

论文作者

Freitas, Pedro, Hefti, Nicolas, Siegl, Petr

论文摘要

我们在有限的间隔内分析了$α/x $,$α> 0 $的单数阻尼,分析了阻尼波方程的溶液的光谱特性和特殊行为。我们为所有正$α$建立了半群的指数稳定性,并确定频谱的条件由有限数量的特征值组成。结果,我们充分表征了在有限时间内灭绝解决方案的一组初始条件。最后,我们提出了两个与极端衰减率有关的开放问题。

We analyze the spectral properties and peculiar behavior of solutions of a damped wave equation on a finite interval with a singular damping of the form $α/x$, $α>0$. We establish the exponential stability of the semigroup for all positive $α$, and determine conditions for the spectrum to consist of a finite number of eigenvalues. As a consequence, we fully characterize the set of initial conditions for which there is extinction of solutions in finite time. Finally, we propose two open problems related to extremal decay rates of solutions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源