论文标题

为社交网络保存隐私目标

Target Privacy Preserving for Social Networks

论文作者

Jiang, Zhongyuan, Sun, Lichao, Yu, Philip S., Li, Hui, Ma, Jianfeng, Shen, Yulong

论文摘要

在本文中,我们将关键保护的现实情况纳入了链接隐私保护并提出目标 - 链接隐私保留(TPP)模型:所谓的目标链接是目标链接是最重要和敏感​​的目标,这些目标是故意遭到对手的意图攻击的目标,为了使需要隐私保护的其他链接,而其他链接则可以予以释放,以维持该图的其他链接,以维持该图表的其他链接,可以正常地释放了该图。 TPP的目的是通过删除预算有限的替代非目标链接来限制目标披露,以捍卫所有目标的对抗性链接预测。传统的链接隐私保护将所有链接视为目标,并集中在结构级别的保护措施上,其中严重的链接披露和高图实用程序损失仍然是当今释放图形的瓶颈,而TPP专注于目标级别保护措施,在目标级别的保护措施中,在关键目标的一小部分中实现了关键目标,以实现更好的隐私保护和降低图形保护和降低图形损失。当前,缺乏明确的TPP问题定义,可证明的最佳或接近最佳的保护者选择算法以及大规模社交图的可扩展实现。首先,我们介绍了TPP模型,并提出了一种差异函数,用于测量针对目标隐私分析的防御能力。我们通过预算分配设置考虑了两个不同的问题:1)我们保护所有目标并优化单个预算的所有目标的差异; 2)除了对所有目标的保护外,我们还通过为每个目标分配本地预算,考虑到两个本地保护者选择,从而关心每个目标的保护。我们还实施了可扩展的实现和实验,以证明所提出算法的有效性和效率。

In this paper, we incorporate the realistic scenario of key protection into link privacy preserving and propose the target-link privacy preserving (TPP) model: target links referred to as targets are the most important and sensitive objectives that would be intentionally attacked by adversaries, in order that need privacy protections, while other links of less privacy concerns are properly released to maintain the graph utility. The goal of TPP is to limit the target disclosure by deleting a budget limited set of alternative non-target links referred to as protectors to defend the adversarial link predictions for all targets. Traditional link privacy preserving treated all links as targets and concentrated on structural level protections in which serious link disclosure and high graph utility loss is still the bottleneck of graph releasing today, while TPP focuses on the target level protections in which key protection is implemented on a tiny fraction of critical targets to achieve better privacy protection and lower graph utility loss. Currently there is a lack of clear TPP problem definition, provable optimal or near optimal protector selection algorithms and scalable implementations on large-scale social graphs. Firstly, we introduce the TPP model and propose a dissimilarity function used for measuring the defense ability against privacy analyzing for the targets. We consider two different problems by budget assignment settings: 1) we protect all targets and to optimize the dissimilarity of all targets with a single budget; 2) besides the protections of all targets, we also care about the protection of each target by assigning a local budget to every target, considering two local protector selections. We also implement scalable implementations and experiments to demonstrate the effectiveness and efficiency of the proposed algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源